Innovation for Our Energy Future

WinDS-H2 Model and Analysis

2004 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review

Walter Short, Donna Heimiller, Michael Berlinski, Nate Blair

National Renewable Energy Laboratory
May 25, 2004

This presentation does not contain any proprietary or confidential information.

Project Objectives

- Identify the scenarios, time frames and regions of the U.S. in which wind turbines that generate both electricity and hydrogen are likely to become economical
- From a market perspective, optimize wind system concepts that produce both electricity and hydrogen, both today and in the future

Budget

 Funded as a part of the NREL Hydrogen Analysis task

Total FY04 Funding: \$230 K

Technical Barriers and Targets

- Hydrogen Generation by Water Electrolysis Barriers
 - T. Renewable Integration
- Targets
 - Verify renewable integrated electrolytic hydrogen production at \$2.50/kg

Approach

- Add hydrogen production from wind to NREL's WinDS model
 - WinDS-H2 is a multi-regional, multi-time-period model of capacity expansion in the electric sector and H2 production from wind in the U.S.
- Evaluate the market potential for hydrogen from wind under different scenarios using WinDS-H2

Project Safety

 Inasmuch as this project is a computerbased analysis effort, there are no safety issues

Project Timeline

Project started in June 2003

Milestones/Deliverables (* completed):

- 1) Base case analysis report *
- 2) Report on the addition of steam methane reforming to WinDS-H2*
- 3) Report on the addition of other renewable technologies to WinDS-H2
- 4) Summary of analysis to answer project questions for wind/H2 analysis

Accomplishments

- WinDS-H2 Model: A brief description
- Base Case results
- A sensitivity case

WinDS Regions

Wind Resources

Transmission in WinDS

Transmission Lines by Voltage

Constraints on Wind Transmission

Hydrogen in WinDS-H2

Cost/Performance for Class 6 Wind Resources

Year	Capital Cost (\$/kW)	Capacity Factor
2000	942	0.4
2010	754	0.5
2020	706	0.54

2010 H2 Technologies Cost/Performance Scenario

Technology	Capital Cost	Efficiency %
Electrolyzer	\$150/kWe	80
Fuel Cell	\$400/kWe	50
Steam Methane Reformer	\$4/kg-yr	70

Base Case Results

Capacities in the Base Case

Hydrogen Production in the Base Case

A Sensitivity Case: Reduced Fuel Cell Costs

Conclusions

- The use of electrolyzers and fuel cells at wind sites to store/shift wind generation from offpeak to on-peak periods is unlikely due to round-trip efficiencies and costs.
- Where wind resources are close to transportation fuel demand centers, electrolyzers at wind farms may be preferred to electrolyzers distributed close to the demand center.
- Wind's most substantial contribution may be as power to the grid needed for the additional demand for power required by distributed electrolyzers.

L National Renewable Energy Laboratory

Interactions and Collaborations

- Interaction with DOE and NREL Hydrogen Programs Analysis staff for hydrogen system configuration and data inputs.
 - Mark Paster
 - Maggie Mann
 - Johanna Ivy
- Interaction with NREL Wind Program staff for wind system costs
 - Alan Laxson
 - Lee Jay Fingersh

Responses to Previous Year's Comments

- This is a new project
- There has been no prior review

Future Work

- Complete FY2004 deliverables
 - Add biomass as a source of H2
 - Document methodology and analyses
- Assess different scenarios of markets and costs
- Continue to refine model and data inputs

